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Abstract 
The ionospheric plasma disturbances typically 

correlate with irregularities in electron density and 

ionospheric scintillations are produced in reaction to 

these variations generating radio signal fluctuations. 

Geolocation services and space based communication 

are endangered due to ionospheric scintillation which 

promptly produces fluctuations in information 

collected by Global Navigation Satellite Systems and 

this is at its strongest when the solar cycle is at its peak. 

Ionospheric space weather has a significant impact on 

Global Navigation Satellite Systems (GNSS) and one 

crucial aspect used in investigating ionospheric 

characteristics is total electron content (TEC). Due to 

fluctuations in time and space, the TEC obtained from 

GNSS signals is nonlinear and nonstationary.  

 

In this study, machine learning approaches for 

Classification of the ionospheric scintillations were 

used during the high solar activity and geomagnetic 

storm in the month of July 2023. This approach enables 

the classification of ionospheric phase scintillations 

using well-known classifiers: Decision Tree and 

Support Vector Machine. 
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Introduction 
Based on its altitude, chemical composition and temperature 

characteristics, the Earth's atmosphere is divided into layers. 

A layer of the atmosphere called the ionosphere is situated 

between 60 and 1000 kilometers above Earth's surface. It is 

a three-dimensional photo ionized dispersive media whose 

chemical composition fluctuates according to cosmic and 

solar radiation14. The day to day, seasonal, longitudinal and 

latitudinal variations, variations due to solar activity and 

variations due to magnetic activity all affect how charged 

particles are distributed in the ionosphere.  

 

As a dispersive medium, the ionosphere prevents radio 

signals from traveling in a straight path15. In satellite-based 

positioning communication and navigation systems, the 

ionosphere may contribute to range rate errors which are a 

significant source of errors. The systems utilizing the 

ionosphere as a propagation medium and operating at 

specific frequencies like shortwave communications and 

microwave communications, are significantly impacted by 

the ionosphere's extremely fluctuating nature. The 

ionosphere's most significant parameter is the ionospheric 

TEC5. Along the signal transmission channel, it is 

determined as the integral of the electron density in a column 

with a 1 m2 cross section. The total content electron (TEC) 

has a direct impact on how the ionospheric inaccuracy is 

corrected. It is an important source for research on 

ionospheric delay correlation and ionospheric estimation. 

 

The inconsistencies in the electron density cause refraction 

and diffraction which cause the signal strength and phase to 

fluctuate whenever radio wave transmissions travel through 

unstable ionosphere and these fluctuations are referred as 

ionospheric scintillations. The solar and geomagnetic 

disturbance are the main causes of ionospheric 

irregularities4,6. When radio wave signals pass over 

anomalies in the electron density of the ionosphere, they 

experience rapid, random phase variations known as phase 

scintillations. The use of global navigation satellite systems 

(GNSS) is highly beneficial for understanding the earth’s 

atmosphere and space weather. The GNSS services are 

susceptible to scintillation because it diminishes the services 

like precision availability and dependability. Therefore, 

developing classification of ionospheric scintillations is 

important. In order to classify the phase scintillations 

utilizing TEC, the support vector machine and decision tree 

classifiers, two of the most widely used supervised type 

learning techniques are employed in this study. 

 

A machine learning technique called support vector method 

(SVM) is based on the idea of minimizing structural risk. 

One of the most used supervised type learning methods, the 

support vector machine method, is made to handle 

classification problems. The theoretically determined result 

will be the overall best option, guaranteeing strong 

generalization performance for unidentified samples and 

resolving the issue of local minimum for neural networks.  

 

The neural network operates on statistics whenever the 

sample data goes to infinity, but the real sample data is 

restricted while the support vector machine is designed 

expressly for the circumstance of limited samples. The SVM 

algorithm cannot be used effectively with large data sets. 

SVM is ineffective when the data set has a significant 

quantity of noise such as overlapping target classes which 
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occurs practically frequently13. When each data point's 

numeric feature value exceeds that of the training data 

samples, SVM underperforms. When there is a substantial 

amount of noise in the data set such as target classes that 

overlap often, SVM is unsuccessful. It is also ineffective for 

big data sets. There is no probabilistic reason for the 

classification that the SVM algorithm made.  

 

Decision trees employ a non-parametric technique which 

means they make no assumptions about the geographical 

distribution. For the majority of classification problems, the 

decision tree (DT) algorithm which belongs to the 

supervised learning class of algorithms, is used. Using a non-

parametric divide-and-conquer approach, the decision tree is 

another appreciated classifier that creates classification 

models using a tree topology1. It simultaneously divides the 

data set into smaller parts and builds a progressive decision 

tree. The structure of DT is systematically arranged with a 

set of rules being implemented in succession from the root 

node to the terminal node.  

 

Choosing the relevance and significance of each of these 

features is crucial. In order to place the most pertinent 

feature according to the tree's rule, the data is separated at 

every node within the tree until a previously specified 

stopping point is satisfied. The decision tree is very easy to 

understand and does not require any sophisticated statistical 

expertise to be interpreted. It can also be employed during 

the data exploration stages because the decision tree 

algorithm is one of the fastest techniques for developing or 

detecting new features. It requires fewer procedures for data 

cleansing and unaffected by the data missing.  

 

Data: The data was collected from the multi-constellation 

GNSS receiver at GITAM Deemed University 

Visakhapatnam (17.78160N, 83.37750E) and processed 

from 13th July 2023 to 19th July 2023 during the high solar 

activity and geomagnetic storm7,8. The elevation angle, TEC, 

time and Kp index are the variables considered in this 

investigation. 

 

Material and Methods 
Estimation of TEC: The TEC estimations are carried out 

using the following methodology in the research 

investigation of ionospheric scintillations. Each satellite 

from multi constellation broadcasts two carrier 

electromagnetic waves within the L1 (1575.42 MHz) and L2 

(1227.60 MHz) frequency ranges. The difference between 

the L1 and L2 signal's ionospheric delays is measured by a 

dual-frequency GNSS receiver and the group delay can be 

expressed as follows: 

 

P2 - P1 = 40.3 * TEC* [
1

𝑓2
2 −

1

𝑓1
2]                        (1) 

 

where 𝑓1 and 𝑓2 are the appropriate high and low GNSS 

signal frequencies, the p1 and p2 denote the lengths of group 

path. The TEC from eq. (1) is written as17:  

TEC = 
1

40.3
 [

𝑓1
2𝑓2

2

𝑓1
2−𝑓2

2] (P2 - P1)            (2) 

 

The 94 data samples collected every day at 15-second 

intervals are being used to estimate the following TEC value. 

The phase scintillation index is subsequently determined by 

utilizing the estimated TEC. 

 

Phase Scintillations: There are two sorts of phase 

scintillation computations. 

 

1. Computation  

2. Classification 

 

The phase scintillation index is subsequently calculated 

using the estimated TEC from eq. (2). The GNSS signal's 

phase fluctuation induced by the transit of the ionosphere 

contains the following refractive component 9:   

 

∅= 
𝑄2

2𝐶𝜀0𝑀𝑒𝐹(2𝜋)2 ∫ 𝑁𝑒𝑑𝜌                         (3) 

 

where "C" signifies the light speed, "∫ 𝑁𝑒𝑑𝜌" signifies the 

total electron content, "Q" signifies the electron's charge, “F” 

signifies the frequency expressed in hertz, “𝑀𝑒” signifies the 

electron’s mass and "𝜀0" signifies the time-dependent free 

space permittivity. 

 

The following reduction of eq. (3) is achieved utilizing MKS 

units: 

 

∅ = 
40.3

𝐶𝐹
𝑇𝐸𝐶                          (4) 

 

where “C” signifies the light speed, "TEC" signifies the total 

electron content and “F” signifies the frequency expressed 

in Hertz. 

 

The phase scintillation index (“ 𝜎Ф”) is characterized as the 

standard deviation of "∅" in radians which is as follows. This 

index is used for accumulating phase variation observations. 

 

 𝜎Ф =√
∑(∅𝑖−∅µ)2

𝑁
                                       (5) 

 

The efficiency of its index serves to define the characteristics 

of the phase scintillations. The weak phase scintillations 

occur when the “ 𝜎Ф” is less than 0.3, moderate phase 

scintillations occur when the “ 𝜎Ф” is between 0.6 and 0.3 

and strong phase scintillations occur when the “ 𝜎Ф” is 

greater than 0.7. 

 

Classification: The following are classifications of the 

phase scintillations made using the support vector method 

and decision tree. 

 

Support Vector Machine (SVM): The support vector 

machines (SVM) in machine learning are the supervised 

learning models with corresponding learning strategies. 
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SVMs, which rely on statistical learning architectures, are 

among the most reliable classification techniques. A 

collection of training examples is provided, each of which is 

flagged as falling into one of two categories and in order to 

categorize fresh instances, new samples are mapped into the 

identical space and classified to belong to a category3. 

 

F(XSVM) = 𝑦𝑆𝑉𝑀= WT XSVM +b                        (6) 

 

where b signifies the bias, w = [w1, w2,...., wM] signifies the 

weight vector and XSVM signifies the input vector. 

 

Decision Tree (DT): A structure known as a decision tree 

includes two or more child nodes for each internal node, 

going all the way up to leaf nodes which are nodes without 

any children. Every internal node corresponds to a test of an 

attribute and the child branches which emanated from that 

node show the potential outcomes of that test.  

 

Every single leaf node located at the tree's tip includes a 

classification identifier attached to it. Pruning strives for and 

eliminates any tree branches that are unnecessary or 

repetitive for classifying the outcome 10. 

 

∆𝑖(𝑠, 𝑡) = i(t)-PLi(tL)-PRi(tR)            (7) 

 

where “s” signifies a potential split at each of the nodes t that 

splits both a left (tL) and right (tR) child nodes in relation to 

pL as well as PR. In this instance, the splitting of the impurity 

standard i(t) is specified. The most accurate measure of 

impurity removal form split “s” is known as the ∆𝑖(𝑠, 𝑡).The 

three impurity measurements that are typically employed are 

Gini index, Chi-square and Gain ratio. Between 0 to 1, the 

Gini impurity index (Ig) is available. 

 

Ig (𝑡𝑈(𝑢𝑖)) = 1-∑ 𝑓(𝑡𝑈(𝑢𝑖), 𝑘)2 𝑚
𝑘=1                         (8) 

 

where f(𝑡𝑈(𝑢𝑖), 𝑘)  is the 𝑢𝑖   probability for each sample 

departing at node t from sample k. The criteria for the 

decision tree splitting are based on the Ig value with the 

lowest value. 

 

Performance metrics for Classification: The current 

research evaluates the performance of these machine-

learning-based classification models using a variety of 

performance indicators. It should be highlighted that the 

effectiveness of these classification models cannot be 

determined by a single metric. Since accuracy, precision, 

recall and F1 score are the performance indicators, a 

comprehensive evaluation system should also include them2. 

 

Accuracy: The model's functionality is evaluated using 

accuracy. It computes the proportion of precise events 

relative to all possibilities. 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                        (9) 

 

Precision: The precision of a model determines how precise 

its optimistic estimates are. This statistic is the ratio of 

accurate positive estimates to all favorable estimates 

produced by the model. 

 

Precision = 
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                        (10) 

 

Recall: Recall gauges a classification model's ability to 

accurately extract all relevant instances from a dataset. It 

measures the proportion of true positives (TP) to true 

positives as well as false negative (FN) occurrences overall. 

 

Recall = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                     (11) 

 

F1 score: A classification model's overall efficacy is 

evaluated using the F1score. The average of both recall and 

accuracy is used to calculate it. 

 

F1-score = 
(2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
                      (12) 

 

Figure 1 depicts the methodology flow chart for the research. 

Data is gathered and analyzed during the high solar activity 

and geomagnetic storm in the month of July 2023 from the 

multi-constellation GNSS receiver at GITAM Deemed to 

University Visakhapatnam (17.78160N, 83.37750E). The 

TEC is calculated during the same duration using this GNSS 

data and using an estimated TEC, the phase scintillations are 

computed. The phase scintillations are classified by using 

the widely utilized algorithms: SVM and decision tree. 

Using the classifiers' performance metrics, the results are 

compared.  

 

Results and Discussion 
In order to calculate and analyze TEC estimations and 

classify phase scintillations, the multi-constellation GNSS 

receiver's carrier phase measurements data are taken into 

account and the data are sampled at 15 seconds. In the 

present research, range measurements are used to determine 

TEC. Phase scintillations are then calculated using the 

estimated TEC. Using decision trees and SVM, the phase 

scintillations are finally classified. This procedure is carried 

out because the process is performed during the high solar 

activity and geomagnetic storm in the month of July 2023. 

 

TEC Estimation: In the present research, range 

measurements are used to estimate TEC using eq. (2). TEC 

values for one week are estimated using one-day TEC data. 

This procedure is carried out for the process performed 

during the high solar activity and geomagnetic storm in the 

month of July 2023. The total electron content for a week 

during the high solar activity and geomagnetic storm in the 

month of July 2023 is shown in figure 2. With the help of 

range measurements made during the high solar activity and 
geomagnetic storm in the month of July 2023 and data from 

one day's TEC, figure 3 shows the estimated TEC for one 

week. 
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Figure 1: Flowchart for Methodology 

 

 
Figure 2: TEC for a week  

 

Phase Scintillations Computations: With the help of TEC 

estimates and range measurements, the phase scintillations 

are calculated. The changes in phase scintillations during the 

high solar activity and geomagnetic storm in the month of 

July 2023 are depicted in figure 4 and they may be classified 

into three levels: low, moderate and strong using widely 

recognized machine learning classifiers namely Decision 

Tree and Support Vector Methods (SVM). The range of the 

10.7 radio flux and the sunspot number for July 2023 is 

141.8 to 149.8 and 110.4 to 120.4 respectively11. High 

scintillations in the month of July 2023 are anticipated 

because of the high sunspot number and 10.7 radio flux13. 

High scintillations are anticipated in the month of July 2023 

as Solar Cycle 25 approaches its maximum12.  

 

Phase Scintillations Classifications: The decision tree and 

SVM and are used to classify the phase scintillations. Figure 

5 illustrates a decision tree classifier for phase scintillations 

classification during the high solar activity and geomagnetic 

storm in the month of July 2023 with 161 samples as the 

sample size (data as of July 2023). The confusion matrix 

depicted in figure 6 is used to assess how well the decision 

tree performed during the high solar activity and 

geomagnetic storm in the month of July 2023. 

 

The decision tree's confusion matrix for the phase 

scintillations of a 1-week data during the high solar activity 

and geomagnetic storm in the month of July 2023 is shown 

in fig. 6. The week dataset consists of 161 samples, all the 

samples are correctly identified.  

 

The confusion matrix depicted in fig. 7 is used to assess how 

well the SVM performed during the high solar activity and 

geomagnetic storm days in the month of July 2023. 
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Figure 3: TEC Estimated using Range measurements  

 

 
Figure 4: Phase Scintillations for Estimated TEC  

 

 
Figure 5: Classification of Phase Scintillations during a Decision Tree Classifier 

 

Table 1 

Decision Tree and SVM Performance Metrics 

Model Sample 

Size 

Accuracy 

 

precision Recall F1 

score 

SVM 161 

(1 week) 

98.13% 100% 98.01 98.99 

DT 161 

(1 week) 

100% 100% 100% 100% 
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Figure 6: Confusion matrix for 1 week using Decision Tree  

 

 
Figure 7: Confusion matrix for 1 week using SVM  

 

The SVM’s confusion matrix for the phase scintillations of 

a 1-week data during geomagnetic storm the high solar 

activity and geomagnetic storm days in the month of July 

2023 is shown in figure 7. The week dataset consists of 161 

samples, 158 samples are correctly identified. The 

performance of SVM and Decision Tree classifiers is 

compared using the performance metrics: accuracy, 

precision, recall and F1 score. The comparison is displayed 

in table1. 

 

Conclusion 
In the present research, we investigate the feasibility of 

estimating total electron content (TEC) via data assimilation 

and ionospheric scintillation Classification is provided. 

Using range measurements, the TEC over the 

Visakhapatnam region is estimated. The computation of 

ionospheric scintillations is carried on by using estimated 

TEC. Decision Tree and SVM classifiers are used to 

categorize ionospheric scintillations. Since the TEC 

variation is dependent on the solar activity and geomagnetic 

storm, the ionospheric scintillations are more prominent 

during the storm. 

 

The decision trees and SVM are used to classify ionospheric 

scintillations and confusion matrices are used to evaluate 

them. The accuracy of the decision tree is 100% during a 

geomagnetic storm, compared to the accuracy of the SVM, 

which is 98.13%. This shows that the decision tree works 

better than the SVM for classifying ionospheric 

scintillations. Therefore, it can be inferred that the decision 

tree is strongly preferable to the widely recognized SVM 

classifier for classifying ionospheric scintillations. 

Consequently, the classification of ionospheric fluctuations 

and scintillations can be thought of as a potential application 

of machine learning techniques. 
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